
Enhancing Energy Efficiency and Operational Excellence in K-12 Schools

by Daniel Hoppe and Seak-Hwa Tan

March 10, 2025

SC Tri Association of Facility Managers

Agenda

Goals and Outcome

Goal:

- Understanding Energy Performance Contract as a Procurement Method
- Understanding of Measurement & Verification Concepts
- Key Considerations for Network Building Management System
- Energy and Utility Management as On-Going Strategies

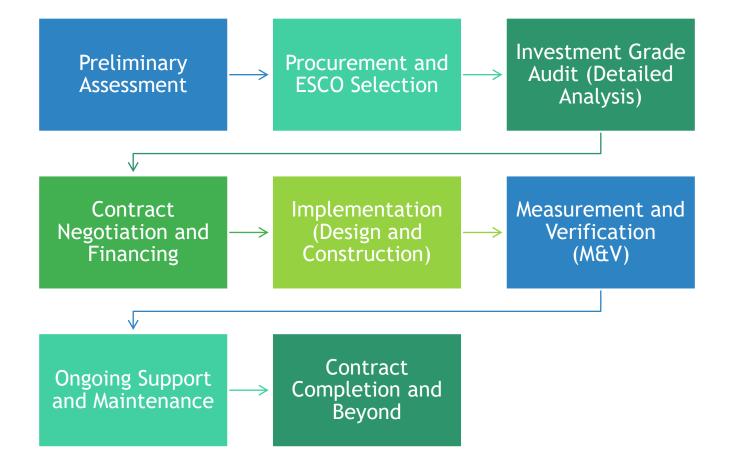
Outcome:

Strategic Approaches to enhance energy efficiency and reduce Operational costs.

Types of Procurement Methods

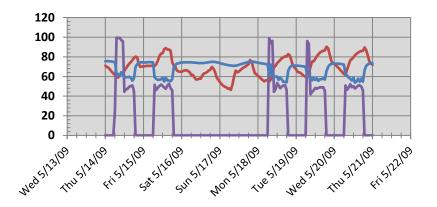
Table: Comparison of Capital Project Procurement Methods in K-12 Markets (Including EPCs)

Procurement Method	Pros	Cons
Traditional (Design-Bid-Build)	 Cost: Lower initial costs via competitive bidding. - Timeline: Predictable. - Complexity: Straightforward, familiar. - Energy Projects: Good for simple projects (e.g., LEDs). 	- Cost: Low-bid focus risks quality, higher long-term costs. - Timeline: Slow due to sequential phases. - Complexity: Multiple contracts add burden. - Energy Projects: Not ideal for complex integration (e.g., BMS, solar).
Design and Build (D&B)	 Cost: Fewer cost overruns. - Timeline: Faster via overlapping phases. - Complexity: Simple, one contract. - Energy Projects: Ideal for integrated projects (e.g., BMS, solar). 	 - Cost: Higher initial bids. - Timeline: Limited stakeholder input. >- Complexity: Needs detailed specs upfront. >- Energy Projects: Risk of prioritizing cost over performance.
Construction Management at Risk (CMAR)	 Cost: Budget adherence via early estimates. - Timeline: Faster via overlapping phases. - Complexity: CM reduces district workload. - Energy Projects: Good for collaborative projects (e.g., BMS). 	- Cost: Higher costs due to contingencies, CM fees. - Timeline: More upfront planning. - Complexity: Requires oversight of CM. - Energy Projects: Risk of cutting energy efficiency to meet budget.



Types of Procurement Methods

Public-Private Partnerships (PPP)	 - Cost: No upfront capital, ideal for tight budgets. - Timeline: Fast delivery. - Complexity: Private partner manages most aspects. >- Energy Projects: Ideal for performance projects (e.g., BMS, solar). 	 Cost: Higher long-term costs due to financing, profits. - Timeline: Delays from negotiations, approvals. - Complexity: Requires legal/financial expertise. >- Energy Projects: Risk of short-term focus over long-term performance.
Cooperative Purchasing	- Cost : Savings via volume discounts. - Timeline : Fast, pre-negotiated contracts. - Complexity : Simple, low staff burden. - Energy Projects : Good for standard equipment (e.g., LEDs).	- Cost: Limited flexibility for specialized solutions. - Timeline: N/A (already fast). - Complexity: Not suited for complex projects. - Energy Projects: Less suitable for custom projects (e.g., solar, BMS).
Energy Performance Contracts (EPCs)	- Cost: No upfront cost; repaid via guaranteed energy savings. - Timeline: Fast, as providers are incentivized to deliver quickly. - Complexity: Provider manages design, construction, and performance, reducing district burden. - Energy Projects: Ideal for comprehensive energy upgrades (e.g., BMS, solar, HVAC), with savings guaranteed.	- Cost: Long-term costs may exceed traditional methods if savings underperform. Timeline: Delays from contract negotiations, performance audits. - Complexity: Requires expertise to negotiate performance guarantees. - Energy Projects: Risk of overpromising savings, needing robust measurement and verification.


Energy Performance Contract Process Flow

What is Measurement and Verification?

Measurement and Verification (M&V) is the process of using measurements to reliably determine actual savings created within an individual facility as the result of an energy management program.

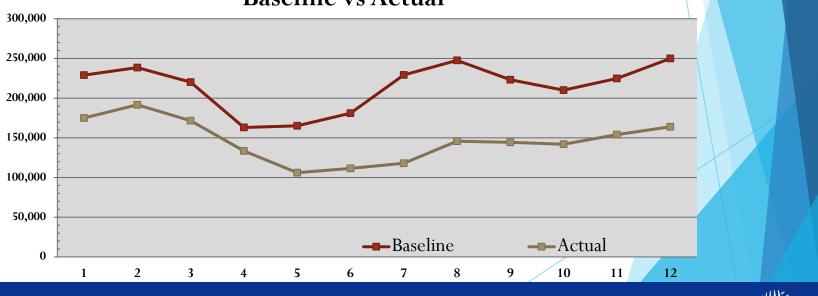
International Performance Measurement and Verification Protocol

M&V Guidelines

- International Performance Measurement and Verification Protocol (2014): (<u>http://www.evo-</u> world.org/index.php?option=com_rsfor m&formId=124&lang=en)
 - Documents common terms and methods to evaluate performance for buyers, sellers, and financiers.
 - Provides best practice methods, with different levels of cost and accuracy, for determining savings.
 - Adds international credibility to Performance Contracting as a vehicle for resource efficiency and sustainability.

International Performance Measurement and Verification Protocol

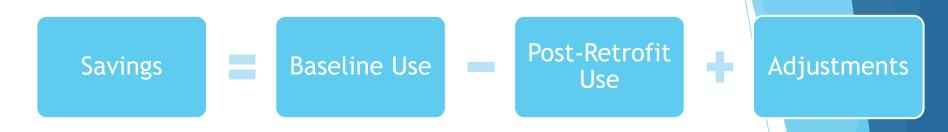
Core Concepts


Prepared by Efficiency Valuation Organization www.evo-world.org

June 2014

EVO 10000 - 1:2014

How to Determine Savings or "Avoided Cost"

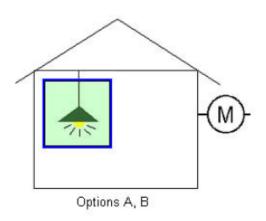

- Energy savings represent the *absence* of energy use
 - Usually determined by comparing energy use before the project (Pre-Retrofit) to energy use after the project (Post-Retrofit)
 - Pre-Retrofit energy usage is called the "Baseline"

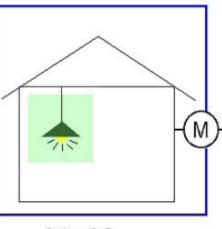
Johnson Controls

Baseline vs Actual

M&V Plan Components

- Baseline Conditions
 - Pre-measurements, Utility Invoices, Rates, Informational Sources, Assumptions
- Post-measurement Procedures
 - Methods/Options chosen, Responsibilities, Calculations, Adjustments
- Report Delivery Requirements
 - Frequency, Format, Future Projections & Activities, Other Responsibilities
- Adjustments
 - Weather, Change of Usage, Additions, Deletions, Population
 - All Adjustments calculations are presented and agreed to with customer




Considerations for Choosing an M&V Option

Project cost & expected savings	Certainty of savings being achieved	Length of contract term	Costs to manage the guarantee
Future plans for facility	Number and types of Facility Improvement Measures (FIM)	Total energy impact of FIMs	Availability of historical utility information
	Ability to establish baseline	Legislative requirements	

The Options

- M&V Options
 - Retrofit Isolation (Options A & B)
 - Whole Facility (Option C)
 - Calibrated Simulation (Option D)

Options C, D

Source: M&V Guidelines: Measurement and Verification Guidelines for Federal Energy Management Projects

M&V Option A - Retrofit Isolation with Key Parameter Measurement

- Savings measured at improvement (FIM) level
- One-time, Short term or continuous field measurements of KEY variables impacting energy usage
- Parameters not measured are estimated
 - Manufacturer's specifications
 - Historical information
 - Engineering judgment
- Sampling is acceptable
- Uses engineering calculations, component or system models
- Generally least expensive option

M&V Option A - Retrofit Isolation with Key Parameter Measurement

or

M&V Option B - Retrofit Isolation with All Parameter Measurement

- Savings measured at improvement (FIM) level
- One-time, Short term or continuous field measurements of ALL variables impacting energy usage
- Sampling is acceptable
- Uses engineering calculations, component or system models
- Typically more expensive than Option A

M&V Option B - Retrofit Isolation with All

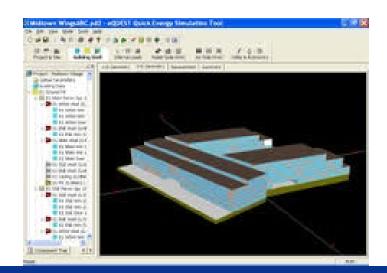
Parameter Measurement

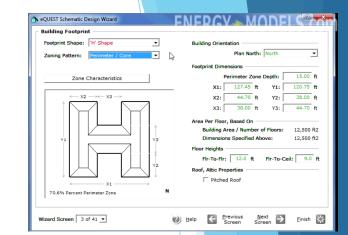
&

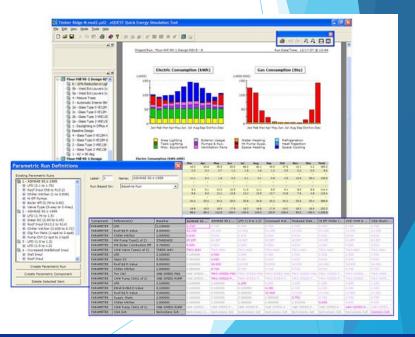
M&V Option C - Whole Facility

- Savings measured at the utility meter
- Regression of utility meter data utilizing weather, occupancy, etc.
- Only used if savings are greater than 10% of the metered utility usage
- Annual savings reporting normally includes adjustments
 - Weather
 - Changes in facility operation
- Often very expensive
 - Typically only applied to projects with interactive FIMs and complex systems
 - Doesn't show savings by measure
 - Requires a lot of interaction with JCI
 - Reporting all facility changes to JCI
 - Requires at least 12 months of baseline utility bills and analysis and documentation of baseline operations across all energy consuming equipment

10.00 IS83

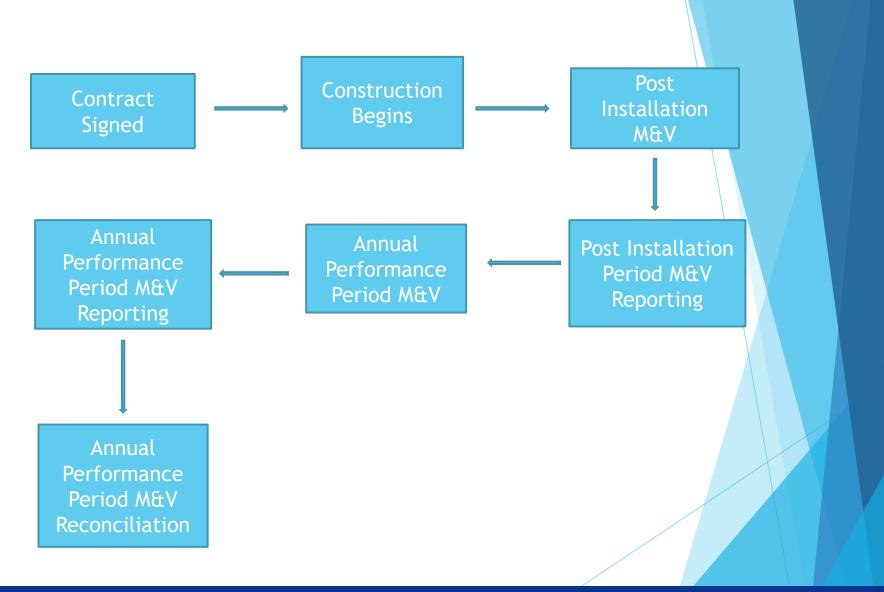

00 000 000


CONTRACTOR AND A CONTRACTOR OF


SOCIE

M&V Option D - Calibrated Simulation

- Detailed computer simulation
- Utilizes short term data and trended data points
- Calibrated to whole-building metered utility data
- Annual savings reporting normally includes adjustments
- Utilized when improvements affects many systems
- Typically for new construction or in cases where baseline energy data no not exist
- Can be very expensive



Operations and Maintenance Savings

- Certain FIMs May Reduce Operations and Maintenance Costs
- These costs can be documented and captured as savings
 - Avoidance of Contract cost savings resulted from Technology Improvement
 - Material savings such as Lighting Material
 - Labor savings Or Better Use of Resources such as reduced Lighting Change Frequency

Projected Time Line

Key Considerations for Implementing Network BMS in K-12 schools

Upfront and Ongoing Costs	Compatibility with Existing Infrastructure	Cybersecurity Risks	Staff Training and Expertise
Maintenance and Reliability	Scalability and Integration	Regulatory and Compliance Requirements	Vendor Selection and Support
	User Adoption and Over- Reliance	Measurement and Verification of Savings	

Building Management Systems Services

Cost Mitigation

 Using Energy Performance Contract as Financing Mechanism


Cybersecurity

• Engage school IT team as soon as possible

Integration

• Tied BMS implementation to school operation's broader strategy

Utility and Energy Management

AND MONITORING

SCHEDULING

PROACTIVE MAINTENANCE

UTILITY BILL MANAGEMENT

BEHAVIORAL MODIFICATION

RETRO-COMMISSIONING AND UPGRADES

RENEWABLE **ENERGY** INTEGRATION