Leveraging Opportunities: Facilities' Energy Lifecycles

March 2025

Presented by George Buchanan-2KB Energy Services Lee Huffines - Commissioning WorCx & Meredith Elder – 2KB Energy Services

Today's Learning Objectives

- Introduction
- Existing Buildings
 - Path to Decarbonization
- Case Study:
 - Novant Health
- Case Study:
 - Decarbonization in Mecklenburg County

Energy Efficiency Projects include audits, implementation, and renewable energy integration.

Why do this as a facility manager? How does this help my facility?

40% of US emissions are attributed to the built environment wherein an estimated 30% of the energy used is wasted

- Design and construction: Improving building design and construction
- Operational efficiency: Improving operational efficiency
- Renewable energy: Generating renewable energy on-site
- Greenhouse gas offsets: Offsetting GHG emissions off-site
- Utility generation planning

Existing Building Commissioning?

New Building Cx

- General awareness and required by code in a lot of cases
- Usually paid for in capital cost dollars.
- Participation by all parties built into cost of project (i.e. design contracts, project specifications, etc.).
- Cost to address issues built-into project.

Existing Building Cx

- Lesser awareness of what it is, costs/benefits.
- Usually must be paid for in operating cost dollars.
- Participation by all parties must be funded.
- Repairs must be funded.

PHASES Of EbCx

Facility Planning

Assessment

Investigatior

Implementatio

Hand-Off

Continued Commissioning

The initial assessment is vital in developing the goals and understanding the challenges of a facility in its current use.

Actions

- •Goals and Cx Plan
- •Available Documents:
- Drawings, TAB reports, Maintenance Logs
- •Current Facility Requirements
- •Interviews with Building Staff
- •Walkthrough

Q Investigation

The investigation phase dives deeper into the energy use, controls, and equipment of the building

Actions

- •Document Reviews
- •Detailed Walkthrough
- •Energy Analysis/Benchmarking
- •Evaluation of Building Automation System
- •Functional Testing
- •Master List of Findings

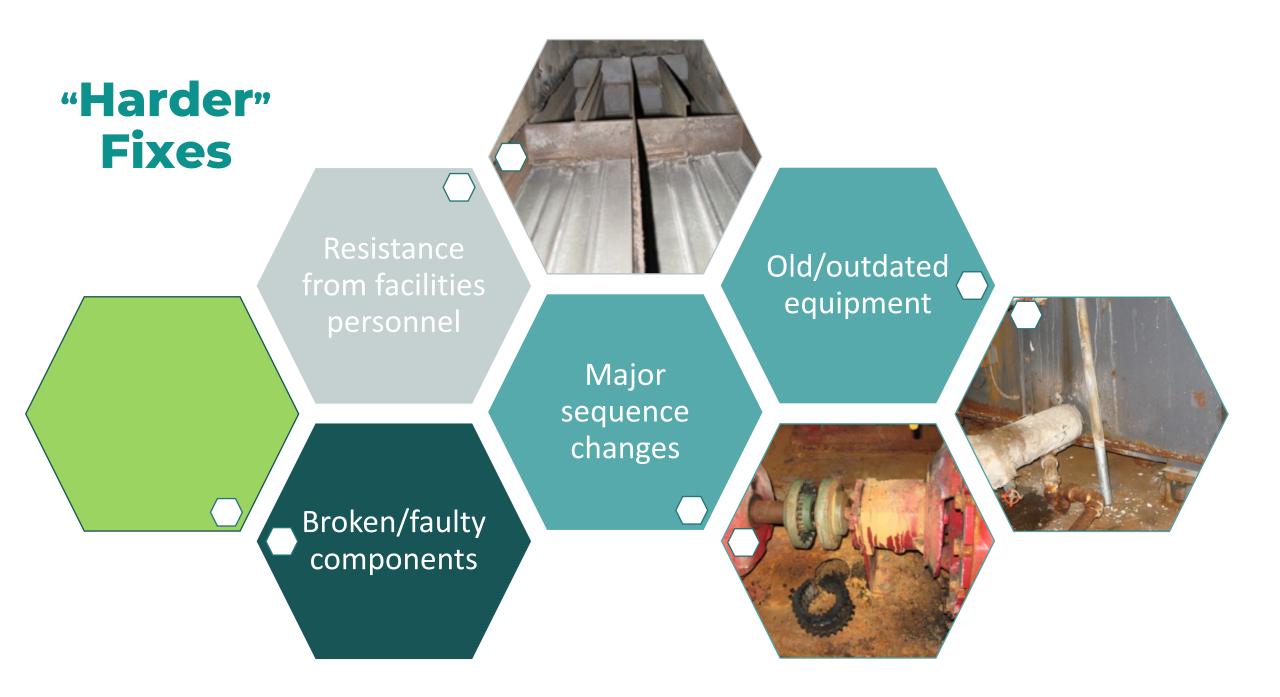
	Typical Findings	No equipment shutdown/turndown during offhours	Operator Overrides
Typical Findings	Simultaneous heating and cooling	Equipment in "HAND"	Sensors out of calibration/not working
	Valves/Dampers working backwards	Equipment not running	Over/Under Ventilation
		Thermal comfort issues	

Why?

NO COMPLAINTS + NO MONITORING = NO ACTION

Facilities Management/Maintenance often not tasked with saving energy

Facilities and Energy often different accounting; Owners struggle to invest facilities dollars to save energy dollars

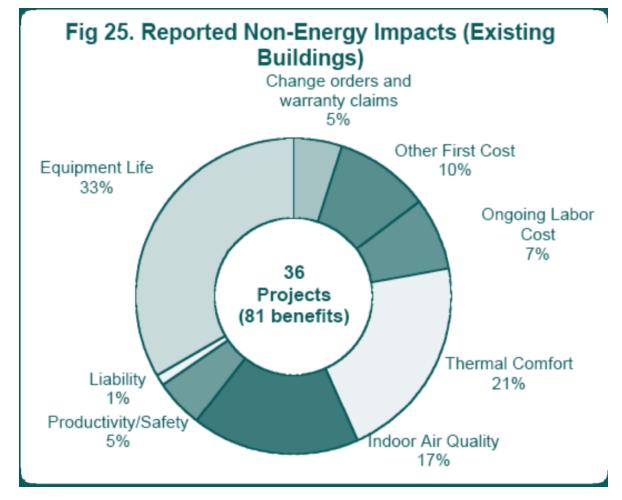

Very small percentage of Facility Owners are implementing existing building commissioning

"Easy" Fixes

- Program Schedules
- Release overrides
- Change setpoints
- Reverse valve/damper actuators
- Sensor calibration
- Cleaning equipment/changing filters

"Hardest" Fixes

- Envelope problems
- Fatal design flaws
- Major equipment past service life
- Outdated controls systems


Existing Building Cx

A 2004 commissioning study by LBNL, PECI, Texas A&M Institute studied 224 buildings totaling 30 million SF

•73% were existing buildings in 21 states (included various building types

18% average energy savings

\$.27/SF median energy savings
O.7 year median payback
(.2 to 1.7year range)
\$.18/SF qualitative payback

Today's Learning Objectives

- Introduction
- Existing Buildings
 - Path to Decarbonization
- Case Study:
 - Novant Health
- Case Study:
 - Decarbonization in Mecklenburg County

Building is approximately 6 years old

Building was designed as an out-patient clinic

No occupancy schedules; runs 24/7

Commissioning team was Commissioning WorCx, Novant Central Facilities staff and the Novant Energy Manager

Building started out with a 51 Energy Star rating (actually 35)

After changes were made the Energy Star rating improved to 65

Our Findings

ČÉŽOŘI ŘE FORTANI T ŪĴUŶÉŽŤÊ ADD

ÛÛË ÉFĘAFÉ AŪJĂËÛB ÇÊĂ ŪŊĂŬĔ AÛJÎNĂ CÊĂ ÎND UTRIDU AÊ ÎNDÛLA: AĴÊÊA

ĂŲĮ́ĂŽĄŽĪĘIJĨĮĮŽĄŽIĮ AĄĄ

Ï LŪI É ĄÜĘŽIĘ ŽÉLĂĘĔ TáclÉáĸ, ĂĂĻÄŪĄŪN BáclÉá -Added occupancy schedules to office modules, cafeteria, and areas not used 24/7

-Corrected some faulty control sequences

-Corrected VAV box sequence and modified cooling minimums to a more realistic value with third point heating maximum air flow Modify the dedicated
 outdoor air unit
 schedules.

 \bigcirc

-Analyze OR schedule

D -Need more occupant override capability in some areas -The building was more comfortable in the wintertime
-Initial Energy Star rating in the low 50's
-Final Energy Star rating 65

-Estimated payback less than 6 months

Today's Learning Objectives

- Introduction
- Existing Buildings
 - Path to Decarbonization
- Case Study:
 - Novant Health
- Case Study:
 - Decarbonization in Mecklenburg County

Project Background

Net Zero Carbon

County policy requires "resultoriented steps" that drive pollution reduction, resource conservation and climate preparedness initiatives with the goal of transitioning to net-zero carbon energy sources by 2035.

Deep Energy Retrofit

A DER targets the entire building as an integrated system addressing multiple components such as the envelope, HVAC, lighting, and appliances. It aims to optimize the energy performance of the entire building rather than focusing on isolated upgrades.

The Considerations

To analyze the effectiveness of measures included in the DER, the team considered lifecycle costs and benefits, operational savings, maintenance requirements, and the return on investment to inform the implementation schedule.

The Master Plan

The Master Plan serves as a roadmap to implement the DER measures to reduce energy consumption from the County's facilities, thus reducing carbon emissions from electricity generation and creating 'net-zero carbon capable' facilities.

Reduction in Carbon Emissions

Overview of Proposed Retrofit Measures

56 Measures Identified

50%

Reduction in Energy Use **\$1.3M** Annual Savings

\$59M Project Cost

\$13M Incremental Cost

Methodology: ECM Overview

HVAC

Airside HVAC

- Roof Top Units (RTU)
- Make-Up Air Unit (MAU)
- Air Handling Unit (AHU)
- Split Systems
- Infrared Heaters (IR)
- Heat Pumps

Waterside HVAC

- Chiller (Air Cooled, Scroll and Screw)
- Heating Hot Water (HHW) System
- Pool Water Heating
- Dehumidification

Building Automation Systems

- BAS Scheduling & Setpoint Adjustments
- Upgrade existing BAS and HVAC Controls
- Retro-Commissioning

Refrigeration

- Install Refrigeration controls and EC Motors
- Install centralized refrigeration and upgrade walk-in spaces

Domestic Water

- Install Laminar Low Flow **Regulators on Faucets**
- Install Low Flow Showerheads on Locker Room Showers
- Domestic Water Heater (DHW)

Lighting, Transformers, Appliances

- Interior Lighting Upgrades
- Exterior Lighting Upgrades
- Replace Appliances
- Install Vending Machine Controls
- Replace Transformers with Highefficiency Models

Control Strategies

- Modify Occupied Temperature Setpoints
- Modify Unoccupied Setpoints:
- Implement Chilled Water Reset Strategy
- Implement a Heating Hot Water Temperature Reset Strategy
- Implement Duct Pressure Reset Strategy

Renewable Energy Integrations

- Convert Water-Source Heat Pump Loop to Geothermal Loop
- Install Geothermal Well System on **RTUs and PTHPs**

Project Timeline

2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Judge Clifton		New Courthouse		Spratt A		Spratt B		Southview		Sugaw
-237 Tonnes C02e	CCOB	-2,678 Tonnes C02e		-77 Tonnes CO2e		-68 Tonnes CO2e		-100 Tonnes CO2e		-19 Tonnes CO2e
-3,481 MMBtu	-195 Tonnes CO2e	-36,548 MMBtu		-1,306 MMBtu		-1,372 MMBtu		-1,782 MMBtu		-265 MMBtu
\$62,942	-2,408 MMBtu	\$566,357		\$28,008		\$21,070		\$28,611		\$4,091
\$1,274,112	\$63,266	\$19,088,270	Aquatic Center	\$1,554,239	Hwy-16 P&R AOB	\$1,400,472	Elon	\$898,796	West Charlotte	\$8,299
	\$1,365,653		-832 Tonnes CO2e		-45 Tonnes CO2e		-12 Tonnes CO2e		-42 Tonnes CO2e	
			-17,426 MMBtu		-873 MMBtu		-153 MMBtu		-769 MMBtu	Marion D
	Valerie Woodard Center	r	\$178,795	LUESA - Suttle Ave.	\$26,534	Historic	\$5,392	Tyvola Center	\$13,378	-182 Tonnes CO2e
Bette Rae	-557 Tonnes C02e	Ivory Baker	\$13,725,224	-108 Tonnes CO2e	\$1,482,807	-153 Tonnes CO2e	\$110,558	-35 Tonnes CO2e	\$534,996	-3,913 MMBtu
-46 Tonnes CO2e	-6,890 MMBtu	-75 Tonnes CO2e		-1,332 MMBtu		-2,602 MMBtu		-427 MMBtu		\$38,727
-762 MMBtu	\$82,746	-1,256 MMBtu		\$36,377		\$50,201		\$7,625		\$1,943,899
\$17,164	\$5,087,235	\$27,202		\$948,942		\$352,744	Arbor Glenn	\$6,224	Ray's Splash	
\$2,569,881		\$1,172,351			MEB		-19 Tonnes CO2e		-208 Tonnes CO2e	
	Materials Recover Facilit	Y			-86 Tonnes CO2e		-363 MMBtu		-4,108 MMBtu	
	-94 Tonnes C02e				-1,548 MMBtu		\$9,804		\$38,641	
	-1,396 MMBtu				\$27,896		\$744,243		\$973,983	
	\$38,601				\$1,858,381					
	\$1,040,778									
s -283 Tonnes C02e/yr	-845 Tonnes C02e/yr	-2,752 Tonnes C02e/yr	-832 Tonnes CO2e/yr	-185 Tonnes C02e/yr	-131 Tonnes C02e/yr	-221 Tonnes C02e/yr	-31 Tonnes C02e/yr	-135 Tonnes C02e/yr	-250 Tonnes C02e/yr	-201 Tonnes CO2e/
-4,244 MMBtu/yr	-10,694 MMBtu/yr	-37,804 MMBtu/yr	-17,426 MMBtu/yr	-2,638 MMBtu/yr	-2,421 MMBtu/yr	-3,974 MMBtu/yr	-516 MMBtu/yr	-2,208 MMBtu/yr	-4,877 MMBtu/yr	-4,178 MMBtu/yr
vings \$80,107	\$184,612	\$593,558	\$178,795	\$64,385	\$54,430	\$71,271	\$15,196	\$36,236	\$52,019	\$42,818
\$3,843,994	\$7,493,666	\$20,260,621	\$13,725,224	\$2,503,181	\$3,341,187	\$1,753,216	\$854,801	\$905,020	\$1,508,980	\$1,952,198

Next Steps

- Procurement
- Project Implementation
- Commissioning and Acceptance
- Measurement & Verification

